Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. Involvement of the cytochrome b(6)/f complex.
نویسندگان
چکیده
We investigated the role of the redox state of the photosynthetic and respiratory electron transport chains on the regulation of psbA expression in Synechocystis PCC 6803. Different means to modify the redox state of the electron carriers were used: (a) dark to oxidize the whole electron transport chain; (b) a shift from dark to light to induce its reduction; (c) the chemical interruption of the electron flow at different points to change the redox state of specific electron carriers; and (d) the presence of glucose to maintain a high reducing power in darkness. We show that changes in the redox state of the intersystem electron transport chain induce modifications of psbA transcript production and psbA mRNA stability. Reduction of the intersystem electron carriers activates psbA transcription and destabilizes the mRNA, while their oxidation induces a decrease in transcription and a stabilization of the transcript. Furthermore, our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and photosystem I influences not only the expression of the psbA gene, but also that of other two photosynthetic genes, psaE and cpcBA. As a working hypothesis, we propose that the occupancy of the Q(0) site in the cytochrome b(6)/f complex may be involved in this regulation.
منابع مشابه
Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism.
We investigated the influence of light of different wavelengths on the expression of the psbA gene, which encodes the D1 protein of the photosystem II and the psaE gene, which encodes the subunit Psa-E of the photosystem I, in Synechocystis sp PCC 6803. In an attempt to differentiate between a light-sensory and a redox-sensory signaling processes, the effect of orange, blue, and far-red light w...
متن کاملNucleotide sequence of the psbA3 gene from the cyanobacterium Synechocystis PCC 6803.
The psbA gene which encodes the Dl polypeptide of the photosystem two reaction center is present as three different copies in the unicellular cyanobacterium Synechocystis sp. PCC 6803 (1). The nucleotide sequences for two of these copies, psbAl (2) and psbA2 (3), have been published. Here we present the nucleotide and deduced amino acid sequences for the remaining copy, psbA3, which is located ...
متن کاملSequence of the two operons encoding the four core subunits of the cytochrome b(6)f complex from the thermophilic Cyanobacterium synechococcus elongatus.
The genes encoding cytochrome f (petA), cytochrome b(6) (petB), the Rieske FeS-protein (petC), and subunit IV (petD) of the cytochrome b(6)f complex from the thermophilic cyanobacterium Synechococcus elongatus were cloned and sequenced. Similar to other cyanobacteria, the structural genes are arranged in two short, single-copy operons, petC/petA and petB/petD, respectively. In addition, five op...
متن کاملA redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. Strain PCC 6803.
We have identified genes in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 that are involved with redox control of photosynthesis and pigment-related genes. The genes, rppA (sll0797) and rppB (sll0798), represent a two-component regulatory system that controls the synthesis of photosystem II (PSII) and PSI genes, in addition to photopigment-related genes. rppA (regulator of ph...
متن کاملFunctional implications of pigments bound to a cyanobacterial cytochrome b6f complex.
A highly purified cytochrome b(6)f complex from the cyanobacterium Synechocystis sp. PCC 6803 selectively binds one chlorophyll a and one carotenoid in analogy to the recent published structure from two other b(6)f complexes. The unknown function of these pigments was elucidated by spectroscopy and site-directed mutagenesis. Low-temperature redox difference spectroscopy showed red shifts in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 122 2 شماره
صفحات -
تاریخ انتشار 2000